Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Long-Guan Zhu ${ }^{\text {a* }}$ and Hong-Ping Xiao ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Zhejiang University, Hangzhou 310027, People's Republic of China, and ${ }^{\mathbf{b}}$ School of Chemistry and Materials Science, Wenzhou Normal College, Wenzhou 325027, People's Republic of China

Correspondence e-mail: chezlg@zju.edu.cn

Key indicators

Single-crystal X-ray study
$T=295 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.007 \AA$
R factor $=0.063$
$w R$ factor $=0.142$
Data-to-parameter ratio $=11.2$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Poly[[[(1,10-phenanthroline)manganese(II)]-μ_{3}-2-nitrobenzene-1,4-dicarboxylato] monohydrate]

In the title polymeric structure, $\left\{\left[\mathrm{Mn}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right]\right.$-$\left.\mathrm{H}_{2} \mathrm{O}\right\}_{n}$, the Mn atom adopts an octahedral geometry. The 2-nitrobenzene-1,4-dicarboxylate ligand is in a chelating-bridging mode and its two carboxylate groups are approximately perpendicular to each other. The crystal structure can be described as layers formed by a two-dimensional network of hydrogen bonds.

Comment

Metal complexes of 2-nitrobenzene-1,4-dicarboxylate (nbdc) have shown interesting architectures compared with benzene-1,4-dicarboxylate complexes (Ma et al., 2003, 2005; Zhu et al., 2004; Ma \& Zhu, 2004; He et al., 2005). As part of a series of investigations of the nbdc metal complexes, the title manganese(II) compound, (I), was prepared.

The metal atom has an octahedral geometry defined by two N donors from one 1,10-phenanthroline and four carboxyl O atoms from three nbdc ligands (Fig. 1 and Table 1). One carboxylate group of the nbdc ligand is in a chelating mode and the other in a μ_{2}-bridging mode. The μ_{2}-bridging carboxylate group is approximately perpendicular to the benzene ring, with a dihedral angle of 73.7 (3) ${ }^{\circ}$, and connects two $\mathrm{Mn}^{\mathrm{II}}$ atoms with a separation of 6.357 (1) \AA. The structure is extended by the μ_{2}-bridging carboxylate group into a twodimensional network (Fig. 2). The layered structure is formed by hydrogen bonds between uncoordinated water molecules and carboxylate O atoms.

Received 15 March 2005 Accepted 22 March 2005 Online 31 March 2005

Experimental

A mixture of manganese acetate tetrahydrate $(0.055 \mathrm{~g}, 0.22 \mathrm{mmol}), 2-$ nitrobenzene-1,4-dicarboxylic acid $\quad(0.051 \mathrm{~g}, \quad 0.24 \mathrm{mmol})$, $1,10-$ phenanthroline $(0.049 \mathrm{~g}, 0.25 \mathrm{mmol})$ and water $(15 \mathrm{ml})$ was heated at 423 K for 24 h in a 30 ml Teflon-lined stainless steel autoclave. After cooling, pale yellow block-shaped crystals of (I) were obtained.

Crystal data

$\left[\mathrm{Mn}\left(\mathrm{C}_{8} \mathrm{H}_{3} \mathrm{NO}_{6}\right)\left(\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{~N}_{2}\right)\right] \cdot \mathrm{H}_{2} \mathrm{O}$
$M_{r}=462.27$
Monoclinic, $I 2 / a$
$a=18.515$ (3) \AA
$b=9.927$ (2) \AA
$c=20.948(3) \AA$
$\beta=94.659$ (3) ${ }^{\circ}$
$V=3837(1) \AA^{3}$
$Z=8$
$D_{x}=1.600 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 3483
reflections
$\theta=2.2-26.6^{\circ}$
$\mu=0.74 \mathrm{~mm}^{-1}$
$T=295$ (2) K
Block, pale yellow
$0.28 \times 0.18 \times 0.16 \mathrm{~mm}$

Data collection

Bruker SMART APEX areadetector diffractometer
φ and ω scans
Absorption correction: multi-scan (SADABS; Bruker, 2002)
$T_{\text {min }}=0.820, T_{\text {max }}=0.891$
7693 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.142$
$S=1.02$
3197 reflections
286 parameters

3197 independent reflections
2021 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.064$
$\theta_{\text {max }}=25.0^{\circ}$
$h=-21 \rightarrow 22$
$k=-11 \rightarrow 8$
$l=-24 \rightarrow 22$

H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0503 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.35 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.37 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{Mn} 1-\mathrm{O} 1$	$2.301(3)$	$\mathrm{Mn} 1-\mathrm{O} 4^{\mathrm{ii}}$	$2.102(3)$
$\mathrm{Mn} 1-\mathrm{O} 2$	$2.223(3)$	$\mathrm{Mn} 1-\mathrm{N} 1$	$2.260(4)$
$\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{i}}$	$2.134(3)$	$\mathrm{Mn} 1-\mathrm{N} 2$	$2.260(4)$
$\mathrm{O}^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{O} 3^{\mathrm{i}}$	$102.0(1)$	$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{N} 1$	$164.8(1)$
$\mathrm{O} 4^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{O} 2$	$104.0(1)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{N} 1$	$73.4(1)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 2$	$86.4(1)$	$\mathrm{O} 4^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{O} 1$	$94.4(1)$
$\mathrm{O} 4^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{N} 2$	$159.2(1)$	$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{O} 1$	$143.6(1)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 2$	$89.1(1)$	$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{O} 1$	$58.0(1)$
$\mathrm{O} 2-\mathrm{Mn} 1-\mathrm{N} 2$	$94.2(1)$	$\mathrm{N} 2-\mathrm{Mn} 1-\mathrm{O} 1$	$86.5(1)$
$\mathrm{O} 4^{\mathrm{ii}}-\mathrm{Mn} 1-\mathrm{N} 1$	$86.9(1)$	$\mathrm{N} 1-\mathrm{Mn} 1-\mathrm{O} 1$	$111.3(1)$
$\mathrm{O}^{\mathrm{i}}-\mathrm{Mn} 1-\mathrm{N} 1$	$102.0(1)$		

Symmetry codes: (i) $x-\frac{1}{2},-y, z$; (ii) $\frac{1}{2}-x,-\frac{1}{2}-y, \frac{1}{2}-z$.

Table 2
Hydrogen-bonding geometry $\left(\AA,^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
OW1 $\mathrm{H} 1 W 1 \cdots \mathrm{O}^{\mathrm{i}}$	$0.86(4)$	$2.15(3)$	$2.949(6)$	$156(5)$

Symmetry code: (i) $x-\frac{1}{2},-y, z$.

The aromatic H atoms were positioned geometrically and were included in the refinement in the riding-model approximation $[\mathrm{C}-\mathrm{H}$ $=0.93 \AA$ and $\left.U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})\right]$. The water H atoms were located in a difference Fourier map and were refined with a distance restraint

Figure 1
ORTEP-3 view (Farrugia, 1997) of a portion of the title compound. Displacement ellipsoids are drawn at the 40% probability level. [Symmetry codes: (i) $-\frac{1}{2}+x,-y, z$; (ii): $\frac{1}{2}-x,-\frac{1}{2}-y, \frac{1}{2}-z$.]

Figure 2
View of the two-dimensional network of the title compound. H atoms and uncoordinated water molecules have been omitted for clarity.
of $\mathrm{O}-\mathrm{H}=0.85(1) \AA$ and with fixed isotropic displacement parameters of $U_{\text {iso }}(\mathrm{H})=0.08 \AA^{2}$. The data completeness is only 94.6% due to the low quality of the crystal.

Data collection: SMART (Bruker, 2002); cell refinement: SAINT (Bruker, 2002); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank the National Natural Science Foundation of China (No. 50073019).

References

Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838
He, H. Y., Zhu, L. G. \& Ng, S. W. (2005). Acta Cryst. E61, m601-m602.

metal-organic papers

Ma, A. Q., Shi, Z., Xu, R. R., Pang, W. Q. \& Zhu, L. G. (2003). Chem. Lett. 32, 1010-1011.
Ma, A. Q. \& Zhu, L. G. (2004). Inorg. Chem. Commun. 7, 186-188.
Ma, A.-Q., Zhu, L.-G. \& Ng, S. W. (2005). Acta Cryst. E61, m483-m484.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Zhu, L. G., Ma, A. Q. \& Lu, J. Y. (2004). Inorg. Chem. Commun. 7, 10531055.

